
J .  Fluid ME&. (1966), “01. 25, part 3, pp. 557-576 

Printed in Great Britain 

557 

Steady three-dimensional vortex flow 

By ROBERT GRANGER 
Engineering Department, U.S. Naval Academy, Annapolis, Maryland 

(Received 3 September 1965) 

A theory is developed for an incompressible fluid in a steady three-dimensional 
rotational flow. Solutions are obtained subject to the restriction of small per- 
turbations and are determinant provided that the vorticity distribution along 
the axis of rotation is known. Effects of viscosity are included. Closed-form 
expressions for the zeroth-order circulation and stream function and first-order 
circulation are given, with other higher-order expressions requiring high-speed 
computers. Experimental results of radial variation of axial velocity in the core 
show a distribution more elaborate than Gaussian. 

1. Introduction 
In recent years a number of writers have formulated the Navier-Stokes 

equations for steady axisymmetric flows. A brief review of the subject up to 1962 
has been given by Lewellen (1962). Rott (1958) considers the case of a potential 
flow field where the radial velocity varies directly with the radius, and the axial 
velocity increases linearly along the axis of symmetry. The results show that 
while the vortex tends to decay, the flow carries new circulation from infinity 
towards the axis of symmetry. 

Donaldson & Sullivan (1960) extend Rott’s solution by considering a radial 
distribution of both radial and tangential velocity, such that the axial gradient 
of the radial distribution of pressure does not exist. This is unrealistic in many 
problems of rotational flow. 

The results of Long (1961) are applicable for rotational flows near the region 
of a sink, and are useful for small values of circulation. 

In  the present paper, the writer adopts a procedure which is akin to that 
employed by Lewellen (1962), in his work on three-dimensional vortex motion. 
In  $ 2  the exact differential equations of motion are developed in terms of the 
circulation and the stream function for steady axisymmetric flow. In  $3,  the 
circulation and stream function are expressed in a power-series expansion of the 
local radial Reynolds number. The differential equation for the zeroth-order 
circulation becomes the Tricomi equation, the solution of which can be found by 
use of the Maclaurin series. The zeroth-order circulation is shown to be dependent 
upon knowledge of the behaviour of the vorticity along the axis of rotation. 

In  $ 4, the writer examines a few examples of rotational flow, each based upon 
a specific distribution of vorticity along the axis of rotation. In  § 5 ,  closed form 
expressions for the axial and radial velocities are derived. In Q 6, the first-order 
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circulation is derived, followed by a discussion of elementary inviscid and viscid 
vortex flows. An exploratory experiment is presented in 5 7 describing the salient 
features of the structure of a steady vortex sink. 

2. Equations of motion 

sible fluid medium expressed in cylindrical co-ordinates are 
The Navier-Stokes equations for axisymmetric steady flow of an incompres- 

( 1 )  

The continuity equation is 
au u aw 
ar r ax 
-+-+- = 0. (4) 

The axisymmetric stream function $is introduced in order to reduce the number 
of dependent variables 

( 5 )  
1 a$ 
r a x '  

= -- 

It is convenient to introduce the circulation 
velocity v through 

Substituting equations (5) to (7) into equation (2) yields 

and relate i t  to the tangential 

T' = rv. ( 7 )  

( 8 )  

Eliminating the pressure gradients in equations (1) and (3)  results in 

Consider the following dimensionless parameters : 

7 = ( r / ro)2,  6 = x /Z ,  ( lo) ,  (11 )  

r = r/rm, + = $/Qi, (1% (13) 
- - 

where ro and 1 are characteristic lengths in the radial and axial direction, respec- 
tively, and are constant. The potential field circulation 277r,, and the radial 
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volume rate of flow per unit length 277Q are both constant. Equations (8) and (9) 
are then expressed as 

(14) 

where the local radial Reynolds number N is based upon the constant radial 
area rate of flow N = QIv, 

and where the Rossby number E is defined as 

(16) 

= 4?l/(rmro), 
and 01 is the geometric ratio 

a = (ro/Z)2. 

The solutions of equations (14) and (15) are formidable since F and 3 are 
coupled. Therefore one must seek a means of uncoupling them. 

3. The circulation 
Lewellen assumed an asymptotic series in powers of Rossby number, but this 

assumption imposes limitations on the axial extent of the motion as well as on 
the magnitude of the radial velocity. The expansion of the circulation and stream 
function in powers of radial Reynolds number requires only thcct the radial 
velocity be small compared to the axial and tangential velocities. For instance, 
it  was found experimentally that the radial velocity reached a maximum near 
the viscous core region of a vortex such that a maximum Reynolds number of 
N = 0.7 was obtained based upon a maximum value of circulation, 

r, = 16in.2/sec. 

The variables are expanded in a power series of N 

m-, 11) = F o ( 5 , r )  + M, r )  N + F2(& 7) N 2  + . . * )  

w, r )  = $ O K  r )  + im., 11) N + Tzct-, 7) f12 + * .  . . 

(19) 

(20)  
- 

Substituting equations (19) and (20) into equations (14) and (15) and equating 
coefficients of powers of N yields a set of equations. The coefficients of No are 

from equation (14) and 
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from equation (15). The coefficients of N yield 

It is interesting to note that when N = 0, one has the potential solution such 
that the zeroth-order circulation represents the circulation of the entire flow. 
Classically, this is a circular Couette flow where the only finite velocity is the 
circular velocity composed of a superposition of a solid-body rotation and a 
potential vortex. It is shown in example A, 5 4, that the present solution precisely 
accounts for this two-dimensional rotational flow. 

The differential equation for the zeroth-order circulation is thus the Tricomi 
equation, with boundary conditions 

~ O ( t , O )  = 0, (25 )  

where yo(() is the vorticity on the centre line. The solution of equation (21) for 
the zeroth-order circulation is based upon the Maclaurin series with boundary 
conditions given by equations (25) and (26); 

The justification for using a power-series expansion about 7 = 0 stems from an 
examination of the general vorticity equation in a region not too far removed 
from the core of the vortex. The vorticity y( [ ,  7) is continuous within a large area 
and on its boundary, whose centre is on the axis of symmetry of the function. 
Furthermore, the derivatives ay/a[, ay/ay are likewise continuous and the second 
derivatives are finite and integrable. It is then possible to show that the vorticity, 
and subsequently the circulation, can be expanded in a power series of ascending 
power of 7, [ of a point relative to the axis of symmetry. Then the solution of the 
general vorticity equation becomes 

Y(6 ,V)  = - Y ( Z  + ir  cos $) @, (30) 
n o  ‘Sli 

where a necessary requirement is that the solution reduces to yo([) ,  when r = 0. 
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By successively differentiating equation (21) with respect to 9 and applying 
the boundary conditions of equations (25) and (26), one can obtain the various 
values of the coefficients in equation (29) 

for n = 1,2 ,3 ,  .... Substituting equation (31) into equation (39) yields the 
expression for the zeroth-order circulation as a function of the vorticity distribu- 
tion along the centre line 

+ ...I. (32) 
a3 

The stability of the solution is dependent upon the vorticity distribution yo([) .  
Depending upon the type of vortex motion, one can derive an analytic expression 
for yo(<) such that the circulation is definable throughout the entire flow r6gime. 
This will be illustrated in $4. 

4. Examples of vortex motion 
Example A : the Rankine vortex 

Consider the steady inviscid flow in a plane where the rotation is constant in the 
radial direction. This occurs solely within the core of a vortex (the core radius 
being defined as that value of radius when the free vortex surface is the forced 
vortex surface. See Appendix A). For this case 

y = L / ( n r ; )  (0 G r Q rO)  (33) 

(34) 

and is illustrated in figure 1. Substituting equation (33) into equation (32) yields 
the circulation 

also illustrated in figure 1. 
One notes in figure 1, that for 9 < 1 the flow is solid-body rotation, whereas 

for 9 > 1 the flow is the potential vortex flow, and hence this motion is circular 
Couette flow. 

- r0 = r2/r; (0 < r < rO), 

Example B: three-dimensionat vortices 
(a )  Rott's vortex 

seeks a solution of the steady-flow vorticity equation 
To derive the centre-line vorticity for the vortex motion of Rott (1 958) one 

For the case of r very small 

(35) 

(36) 

Fluid Mech. 25 36 
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The solution where the vorticity is of separable form is investigated first, 

y(r ,  4 = Y o ( 4 W .  ( 3 7 )  

Substituting equations (37) and (36) into equation (35) and integrating yields 

8 

?- 
E! 

f 
N O  

0 
0 0.5 1 *o 1 -5 

7 

FIGURE 1. Radial distribution of vorticity and circulation for the Rankine vortex. 

Equation (39) satisfies all the boundary conditions of equations (25)-(28), and 
yields the vorticity distribution described by equation (38). In addition, the 
vortex motion described by equation (39) reduces to Rott's vortex when surface 
conditions (f = 0) are imposed, 

- 
PO(O, 7)  = 1 - e-9. (40) 

However, substitution of equation (38) into equation (32) yields for = 0 

(41) - ro(o,v) = 1 -  v2  i-y+----+.. .+-----+.. .  1 v3 ( -  1ln v n  [ 2! 2!3! (n - l)! n! 
or alternatively 

The circulatory motion described by equation (42) has been derived by Burgers 
(1956) utilizing Lamb's equation. Burgers discusses the restrictions on 7 and the 
similarity of this type of rotational motion with those examined by several other 
investigators. 
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If one assumes the vorticity distribution 

and then sets 6 = 0.44&, (44) 

which is a statement of the condition very close to the surface (since CI. is usually 
a very small quantity), one can obtain equation (40) by substituting equation (43) 
into equation (32). Equation (43) is derived from equation (35) utilizing the near- 
surface condition of equation (44). Rott’s vortex can thus be obtained by a 
judicious choice of vorticity distribution. 

(b )  Alternative form of the three-dimensional vortex 

vorticity is the infinite power series 
With r and z as independent variables, an obvious alternative solution for the 

y(r,z) = ~ a m , n z m r n .  (45) 
m, n 

By seeking an expression for the vorticity distribution solely along the centre 
line, the only coefficients that are of interest in equation (45) are those for n = 0. 
Substituting equations (45) and (36) into equation (35) and equating like powers 
of the variables yields 

a1,o = 0, 

a2, = - %a 2 42’ 

a3,0 = -*a 6 1.2 = O ,  

a5, = - &a3, = & . +zl, = 0, 

a6,0 = -4 30a4,2 = ?F-#ga2,4 = 1 0,6’ 

a4$ = -2L-J - 4 1Ba 
1 2  2,2 - 12‘ 6 0,4’ 

4 l S - l E a  

Rott’s solution at  the surface can be satisfied by making 

Substituting equations (46) and (47) into equation (45) yields 

Figure 2 shows that the vortex with yo(z) given by equation (48) is stronger than 
the vortex given by equation (38). 

Many other vortex motions can be analysed through knowledge of yo( [ ) .  
Consider a vortex that has a motion similar to an Oseen vortex of the form 

y(r ,  x )  = f ( x )  e-f@)‘’. 

( f ”  - 4f2) (1 -fr2) + r2f’2(fr2 - 2) = 0. 

(49) 

(50)  

Substituting equation (49) into equation (35) yields 

36-2 
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The vorticity at the centre line yo([) is thus 

such that equation (50) becomes 

The solution of equation (52) is 

Yo(d =m, 
f'f-4f2 = 0. 

f = a(&,, 
10.0 

8.0 

6.0 

4.0 
8 
5 s 
k 
N O  

2.0 

1 .o 
0 0.5 1 s o  

zlro 

FIGURE 2.  Axial distribution of centre-line vorticity for two similar vortices. 

where ,$I is the elliptical function of the Weierstrass canonical form. With condi- 
tions of zero vorticity at the boundary, equation (53) becomes 

f =  1*5/z2. (54) 

The zeroth-order circulation Fo(& 7) can be found by substituting equation (54) 
into equation (32) yielding 

where x = ,VIE2. 

5. The stream function 

equation (22), with boundary conditions 
The differential equation for the zeroth-order stream function go is given by 
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where wo(g) is the axial velocity along the axis of symmetry. By use of the 
transformation (61)  x = 7/62 = x/a,  

and by defining p 5 @,/dX, ( 6 2 )  
equation (22)  can be expressed as 

(63) d3P d2p 150 dp 60 - o. 
ax3 dX2 8 a x a x  8 X ( E X + ~ ) ~ - + ( ~ ~ ~ X ~ + ~ E X + ~ ) - + - -  -+-EP - 

Because of repeated roots in the indicia1 equations, equation (63)  is approxi- 
mately satisfied by 

x ( q +  1 ) 2 ~ 2 + ( 6 a 2 ~ 2 - a ~ +  1 ) - + ( y a 2 X + a ) p  = c. (64)  d2 dP 
dX dX 

Use is made of the method of Frobenius. Substituting the infinite power series 

P = C a n x "  
n 

into equation (64) ,  the coefficients of equation (65) are evaluated and found to be 

for n = 2,3,4,  ..., where al,  a,, c are evaluated from the boundary conditions of 
equations (57 )  and (58). Integration of equation (65) yields 

-- " - 0 . 5 ~ -  0-2817z3+ 0~0705x4+0~1836x5 
Z2Wo 

- 0 * 1 5 ~ 6 - 0 * 0 2 8 ~ ' + 0 * 1 5 2 ~ * - 0 * 1 4 5 5 ~ ~  

+ 0 * 0 2 9 ~ ~ ~ + 0 * 0 9 6 ~ 1 ~ -  0 . 1 5 1 ~ ~ ~ + 0 . 1 1 5 ~ ~ ~  

- 0 . 0 2 ~ ~ ~  - 0 . 0 7 5 5 ~ ~ ~  + . . . . 

1.0 

9 
%. 0.1 
5 

1 .o 00 1 
0.0 1 01 

(r/z)z 

FIGURE 3. Zeroth-order stream function $o. 

It is seen from figure 3 that 
5 0.434r2w, 

is a good first approximation to equation (67). For instance, if the axial velocity 
along the centre line is a constant, then by equations (68) and ( 5 ) ,  there can 
be no radial velocity. However, equation (68) states thatthere exists no radial 
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variation of the axial velocity and is therefore too restrictive for our analysis but 
does complement Rott’s results. 

It can be noted further from equation (68) that the stream tube radius is 
inversely proportional to the square root of the centre-line velocity. One suspects 
that such a conclusion would not exist in the forced flow field where viscosity 
effects are large. The higher-order circulation terms would have to be included 
for precise evaluation of the velocity field and will be discussed in $ 6 .  In the 
region where N NN 0, the results of the zeroth-order approximations are fair when 
compared with the experimental results shown in $ 7. 

0.8 

0.6 
e 

P ’ 0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 1 .o 

TI2  

FIGURE 4. Axial velocity profile for vortex sink flow. 

The axial and radial velocities are found by substituting equation (67) into 
equations (6) and (5) resulting in 

W / W ~ ( ~ )  = 1- 1*699x2+0*564x3+ 1 . 8 2 6 ~ ~ -  1 . 7 8 8 ~ ~ +  ..., (69) 

for the axial velocity and 

u / w ~ ( $ )  = xQ[1*1266 - 0 . 4 2 3 ~  - 1 . 4 6 8 8 ~ ~  + 1 . 4 9 ~ ~  + . . .] 
W’ 

WO 
+ &(cL~)$--O [l - 0 . 5 6 3 3 ~ ~  + 0 . 1 1 4 ~ ~  + 0*3672~*- .  ..I, (70) 

for the radial velocity. Higher-degree terms can be obtained by use of the 
recursion formula of equation (56). The axial velocity is illustrated in figure 4. 

6. First-order circulation 
In  $ 3 the circulation of zeroth order, Po(c, q) ,  was developed and applied to 

flows that were principally potential, i.e. where the local radial Reynolds number 
is small or zero. The case where N = 0 requires that one of three conditions be 
satisfied: (i) application to very viscous fluids such that the rotational motion is 
solid-body rotation; (ii) application to rotational but inviscid fluids such that 
the radial volume rate per unit length, Q, is zero, or (iii) application to viscous 
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fluids where the radial diffusion of vorticity along the vortex axis is such that 
the axial flux remains constant along the axis. Many one-celled vortices where air 
is not sucked into the axis of rotation are such that, for negligibly small values of 
N ,  the zeroth-order circulation f, and stream function go will suffice for calculat- 
ing the steady-flow field. In  this section, the effect of viscosity on the motion of 
vortex flows is discussed. To find the effect of viscosity, one would have to include 
higher-order terms f,, 

The first-order circulation Fl(& 7) is found in the same manner as Fo((, 7) .  
A Maclaurin expansion about the centre line yields 

fz, g2, etc. 

- 
rl(L 0) = 0, aQ(t,O)/a7 = 0, (7% (73) 

where the vorticity at  the centre line has previously been specified by equation 
(26). From equations (23) and (73), one obtains 

Substituting equations (32) and (67) into equation (74) yields 

aT,([, 0) nrtal 
ar2 4r,Q 

(row; -WoYb)- 
- -- 

In  a similar manner, one obtains from equations (23) and (75) 

a3P1(t, 0) mi& 
a7I3 16r,Q 

a4F1(6, 0) nrtaY 

=--- (WOYl -yaw{), 

and from equations (23) and (76) 

(Yo@ - WOY,v), ar4 19217, Q 
___- - - 

such that the first-order circulation becomes 

Ill T3 2 T 2  
(YoWb-WoYb)-- 2! (i) ( Y o w ~ - w o Y o ) ~  

+ - I( w ~ - w ~ Y ~ ) - - . . .  . (78) 
74 4! 1 (333 Yo 

One notes that f,((,q) = 0 for circular Couette flow, as should be the case. In  
addition, one notes from equation (78) that a necessary condition for potential 
flow is that the axial velocity at  the centre line be similar to the vorticity distri- 
bution along the centre line, i.e. 

YO(~) /WO(O = const., (79) 

where the constant could have the values zero or infinity. For instance, consider 
those flow situations where the tangential velocity can vary only radially. It then 
follows from the definition of vorticity, 
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that vorticity can vary only in a radial direction. Introducing this restriction in 
equation (2) and integrating yields 

y(r)  = A eliufudr, (81) 

where A is an arbitrary constant of integration. Consider the following 
elementary examples : 

Example C :  Solid-body rotation 

If the radial velocity u is zero everywhere in the flow field, the flow is said to 
rotate as a solid body at  an angular velocity w ,  such that, from equation (81), 

y = 2w. (82) 

In  addition, the local radial Reynolds number N is also zero, from the definition 
by equation (16), which makes equation (79) applicable to solid-body rotation. 
From continuity, one finds that the centre-line axial velocity cannot vary in the 
axial direction, and usually is assumed zero. 

Example D :  Free vortex 

A free vortex is characterized by two conditions: 
(i) A linear radial distribution of radial velocity, 

u = -ar, (83) 

which can result in a linear axial distribution of axial velocity 

w = 2az (84) 

upon integration of the continuity equation. 
(ii) Viscous effects are zero for the free vortex, such that from equations (83) 

and (84) one obtains zero vorticity everywhere in the flow field. Hence, the 
constant in equation (79) is zero for the case of a free vortex. One finds the 
tangential velocity 

by integration of equation (80) and by using the definition of circulation r,. 
The solutions given by equations (83)) (84) and (85)  for the velocity field of a free 
vortex are thereby exact solutions of the Navier-Stokes equations. 

Examples C and D set the upper and lower limits of a class of rotational flows 
where the tangential velocity varies only in a radial direction, and where N = 0. 

For those flow situations where equation (79) is violated, i.e. where the ratio 
of this vorticity to axial velocity at  the centre line is some function of 5, an 
improved expression over the zeroth-order circulation is, from equation (19)) 

( 8 5 )  = rm/pnr) 

- 
' ( 5 3  7)  'O(5, 7) + 'l(67 7) N *  (86) 

In  those instances where 01 < 1, one may consider solely the first terms in the 
Fl(5, 7) expression given by equation (78), since viscous effects are important in 
flow fields where r < rc, r, being the core radius discussed in Appendix 1. 
Therefore, viscous effects can be studied for small values of N by comparingr, N 
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with F,, where the first-order circulation given by equation (78) is approximated 

for r < re, where sgn is positive for radial outflow and negative for radial inflow. 
For a negative value of radial velocity, i.e. N < 0,  the fluid is moving radially 

toward the axis of symmetry and accelerating axially toward the sink. For flows 
of this type, the experiment as presented in $ 7 ,  was devised. The results shown in 
figure 7 show negative curvature for vorticity yo, and positive curvature for axial 
velocity wo such that the sgn of equation (87) is negative. 

For a positive value of radial velocity, i.e. N > 0, the fluid is moving radially 
out of a cylindrical flow, and a vorticity distribution with positive curvature is 
permissible, such as the vorticity distribution given by equation (38). The sgn 
of T,N in equation (87) is negative. 

There are some viscous flows that can be approximated with some degree of 
accuracy by the potential solution. For example, consider the limiting case of 
Burgers (1956), where N = -m. Such a case is not directly applicable to our 
perturbation technique owing to the infinite value of I?. Burgers considers the 
velocity distributions of equations (83) and (84). The vorticity y(r)  for such 
velocity profiles is, from equation (81), 

The tangential velocity is found by substituting equation (88) into equation (80) 
and integrating. The result of the integration is 

n 

However, the rotational flow described by equation (89) is precisely the rotational 
flow given by equation (40) if one sets 

rt = 2v/a. (90) 

Thus viscous flows of certain types can be treated by examination of the zeroth- 
order circulation ]To.  The solution is dependent upon judicious choice of the 
expression for the vorticity distribution along the centre line. 

7. Exploratory experiment on the structure of a steady vortex sink 
7.1. Experimental apparatus 

The principal experimental investigation was conducted with water as a working 
fluid in a cylindrical vortex tank, illustrated schematically in figure 5. 

The tank was 4ft. high and 23in. in diameter. It could be filled with water to 
within a few inches of its rim. There were two concentric cylindrical walls both 
made of clear plastic sheets, an outer wall firmly mounted in the horizontal 
tank table so as to create a water-tight container and the inner cylindrical wall 
inserted into the former so as to form a narrow annular space of *in. radial width. 
The water circulating through the tank was admitted to this annular space 
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through 8 vertical tubes equally spaced about the perimeter, the walls of which 
were perforated by equally spaced small holes so as to distribute the entering 
water uniformly in a vertical direction. Numerous holes were punched with 
uniform spacing in the inner cylindrical wall, each hole provided with a hood to 
direct the jets of water tangentially along the inner cylindrical surface. In this 
way, a circulation was imparted to the body of water filling the central space of 

,Reservoir 

FIGURE 5 .  Schematic of vortex generator. 

the tank. The circulated water was removed through a central hole located on the 
bottom surface of the tank. Thence the water passed through a remote-controlled 
shutoff valve to a centrifugal pump placed into the external closed circuit, then 
through a throttle valve, and finally to a header back into the admission tubes 
of the tank. 

7.2. Heasurements of the undisturbed Jlow of the vortex sink 

Steady laminar flow was achieved in the field of the vortex sink which was 
produced in the vortex tank described previously. By systematic survey measure- 
ments it was found that the turbulence which was created in the mixing zone of 
the tangential influx jets died off within 4in. of the inner cylindrical wall of the 
tank. Similarly, the influence of the boundary layer along the bottom of the tank 
was not evident except within 1 in. of the bottom surface. Excluding a layer of 
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fluid of 1 in. thickness adjacent to the free surface, upon which free-surface effects 
might possibly exert an influence, a cylindrical body of fluid 14in. in diameter 
and in excess of 3ft. in height was available free from extraneous disturbances. 

The magnitude and distribution of circulation throughout the field of laminar 
flow of the vortex were measured by timing the motion of a globule of dye 
judiciously inserted into the water so as to impart an initial momentum equal to 
that of the ambient fluid. 

The path of the globule, in general being helical, appeared as a concentric circle 
when viewed parallel to the axis of the tank (see figure 8). The radius of such a 
path was measured and the angular velocity of the globule was clocked over 
a complete circle, or over a marked arc. Care was taken to obviate errors in 
measurement ensuing from parallax effects. Also, precautions were taken to 
preclude possible errors due to precessional motion of the vortex filament by 
eliminating measurements for which such precession occurred. Measurements 
were taken only after steady conditions were established. Approximately 45 min 
were required for the flow to reach a new steady state after altering the value of 
the circulation. 

The circulation was calculated from the formula 

where w is the angular velocity of the globule and r the radius of its path. It was 
found that, with the exception of an inner cylinder of radius r = 1*5in., the 
circulation was constant with radius as well as with depth. The value of the 
circulation in the potential flow field of the vortex sink is indicated by I?,. The 
circulation I?, was varied from one experiment to the next by varying the rate 
of flow through the vortex tank, to which it was proportional. Any value of 
circulation could be established in the range between rmdU = 5.5in.Z/sec and 

= 17 in.2/sec. At a circulation lower than rm,,u, precessional oscillations 
of large period made systematic measurements difficult; a t  a circulation larger 
than roomax, entry of air altered the flow in the region of the core, thereby 
precluding its investigation. 

7.3. Measurement of vorticity along the centre line of the vortex 

A special technique was developed to measure the vorticity along the centre line. 
It allowed signals of a beam of light reflected from a surface rotating with the 
fluid to be recorded. The reflecting surface was incorporated in a tracer device 
of neutral buoyancy which, while being carried with the sink flow along the axis 
of the vortex, rotated at  very nearly the local angular velocity of the fluid. Close 
agreement between the angular velocity of the tracers and that of the fluid was 
favoured by their very low moment of inertia about their axis of rotation and by 
the fact that the radial variation of the axial component of vorticity at  the axis 
of the vortex is zero since the vorticity has its maximum there. 

The indicator shown in figure 6 had the appearance of a low-wing airplane in 
tail-spin attitude. It consisted of a rectangular piece of thin reflecting aluminium 
foil of $in. to 4 in. span and Q in. chord to which a cylindrical body of buoyant 
material was glued at  mid-span, projecting toward one side of the wing so as to 
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place the centre of buoyancy above the centre of gravity. Neutral buoyancy and 
proper spinning characteristics were obtained by trimming this object with a 
pair of scissors. 

Photographic records of the travel of these sensor devices were obtained by 
training a light beam along the vortex axis in the otherwise darkened area. Upon 
launching a sensor, a line of dots of light was obtained on the film of a camera with 
open shutter trained upon the vortex axis. The distance between dots indicated 
axial displacement and, since the axial velocity was known from other measure- 
ments, it  provided a time scale. Each dot marked a half revolution of the sensor. 

7.4. Variation of centre-line vorticity with circulation 

Measurements of the vorticity on the centre line of the vortex were obtained by 
the rotation-tracer technique at three axial locations, for several values of free- 
stream circulation r,. The results, figure 7, show that yo varies as the square of 

(92) 
the circulation 

This result confirms an earlier result, that the core radius r, varies inversely as 
the square root of the circulation, 

since equation (A 2) 

yo= r:. 

T C K  1 / $ L  (93) 

yomz = k r ,  = const., (94) 

or Yo% = k~rCDi(nr31 (95) 
for similar y(r)  profiles. 

the vortex sink, corresponding with the decrease of core radius. 
The centre-line vorticity, as seen from figure 7, was found to increase toward 

7.5. Radial distribution of vorticity 

The radial distribution of vorticity was measured as a function of radius at 
various axial locations. Typical results plotted in the form y(r)/yovs.r, for a 
given value of circulation I?, = 9.42in.2/sec a t  the axial station 5 = 0.34 are 
shown in figure 9. The experimental point on the axis of rotation was obtained 
by the airfoil-indicator technique described in 8 7.3. 

Points in the viscous core and in the potential field were obtained by time- 
exposure photographs of the motion of globules that were injected into the flow 
at predetermined axial and radial stations. A typical result is shown in figure 8. 
The globules consisted of a mixture of bromo-naphthalene, paraffin oil and 
Sudan I11 dye. 

The curvature of the slope near the vortex core was obtained by equating the 
area under the curve to the circulation. The core radius was obtained from the 
intersection of a parabola, osculating about the centre line, with the abscissa. 

7.6. Axial velocity along centre line 

Axial velocity distributions along the centre line were measured by timing the 
motion of dye globules. It can be stated with sufficient accuracy for present 
purposes that axial flow occurs only in the core for this experiment. The axial 
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velocity wo was determined by placing a drop of dye of near neutral buoyancy on 
the free surface of the water at the centre of rotation. This dye formed a thread 
with it clearly discernible front, the progress of which was timed throughout the 
length of the vortex filament. Local velocities were calculated from measured 
average values for various values of free-stream circulation r,, and reduced 
ratios w,,/r: were plotted in figure 7 .  This resulted in a single curve, from which 
individual points of measurement deviated very little. Characteristics of the 
curve close to the free surface cannot be discussed, since insufficient measure- 
ments are available for this region. 

1 .o 

0.75 

ci 8 
k, 
Q 0.5 q . s 

0.2 5 

0 
0 0.25 0.5 0.75 1 *o 

E 
FIGURE 7. Variation of  vorticity and axial velocity along the vortex axis. 

0, I?, = 5.35 k2/sec;  FJ, I?, = 8.15 h2/sec;  A, I?, = 8.8 in./sec; x , I?, = 12.6 in./sec. 

7 . 7 .  Radial variation of axial velocity 

The hydrogen-bubble technique was found useful in measuring the radial distri- 
bution of the axial velocity in the region where the dye technique failed. A silver 
wire of approximately 0.003 in. diameter was stretched horizontally diametric- 
ally across the vortex core at  various depths below the free surface. The elastic 
supporting wires were bent helically to minimize disturbances. A current pulse 
was discharged, and within a measured fraction of a second the screen of bubbles 
produced was illuminated by a light flash and photographed. It was found that 
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errors in evaluating the radial locations, owing to the peripheral displacement, 
were negligible. The measured profile of axial velocities was approximated by 
a, Gaussian distribution. A comparison shown in figure 10 reveals significant 
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FIGURE 9. Radial variation of vorticity a t  E = 0.34 for Fa, = 9.42 in.a/sec. 
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FIGURE 10. Radial distribution of axial velocity a t  E = 0.2 for Tm = 4 ha/sec .  

0, Experimental (by hydrogen-bubble technique); n, Gaussian fit. 

deviations. Figure 10 does reveal that the core radius obtained by fitting a 
Gaussian distribution agrees very well with that core radius obtained by vorticity 
experiments (see figure 11). Furthermore, the theoretical zeroth-order approxi- 
mation appears inadequate in the core region, as shown in figure 10. 
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7.8. Viscous-core radius 

Since the flow was laminar throughout the core, it is natural to surmise that, in 
the absence of an exact theoretical solution for the steady laminar vortex sink, 
the core radius varies inversely as the square root of the Reynolds number, as is 
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F I G ~ E  11. Axial variation of core radius. A, 0, Averaged results for all axial velocity and 
vorticity respectively. 4, rm = 6.04 in.2/sec; 0, rrn = 6.85 h2/sec;  4, Too = 7.0 in.2/sec; 
A, roo = 7.9 in.2/sec; Q, Fm = 8.55 in.2/sec; u, rrn = 9.75 in.2/sec;-0, rm = 11.2 im2/see; 
p, rrn = 11.5 h2/sec; Q, roo = 12.2 in.2/sec. 

the case for laminar boundary layers along solid surfaces. For this reason, the 
quantity rc/&rn was chosen as abscissa in figure 11 since r m / v  denotes the 
Reynolds number for the vortex sink. 

As seen from figure 11, experimental points of [vs. rc/rm confirm the validity 
of the pre-supposed Reynolds-number function. For obvious reasons, the core 
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radius on the free surface and on the bottom surface could not be measured. It is 
seen further from figure 11 that the core radius decreases as the sink is approached 
and that this decrease appears to be of a logarithmic nature. Also, the diameter 
of the core based upon radial distribution of axial velocity does not have the same 
value as that derived from radial-vorticity distribution. 

This investigation was sponsored by the Office of Naval Research, United 
States Department of the Navy, under Contract Number NR 062-376. 

Appendix 1. On the core radius 
The core radius is the value of the radius for which the forced vortex field meets 

the free vortex field, or stated alternatively, where the tangential velocity of the 
potential field is a maximum. The value of the core radius where the tangential 
velocity is a maximum is, from the equation ( 7 ) ,  

r, = &&, r c ) / m z ,  y c ) / 3 r ,  (A 1) 

where Po is given by equation (32). For instance, vortex motions that are of the 
Oseen form given by equation (54) (which have been treated by Newman 1959) 
yields, from equation (A 1)) 

which states that the core radius is inversely proportional to the square root of 
the vorticity along the centre line and proportional to the core radius of a Rankine 
vortex by a factor of 1.12. This justifies the judicious choice of an equivalent 
Rankine vortex rather than the Oseen vortex for many flow situations. 

rc = 1*12/\&), (A 2) 
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FIGURE 6. Photographic record of indicator motion along 
axis of rotation. 
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FIGURE 8. Rotatioml motion (top view) of globule: 
radins = 0.275 in., time = 0.5 sec, [ = 0.34, y = 13.5 rad./sec, Fw = 7.9 in.2/sec. 
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FIGURE 8. Rotational motion (side view) of globule: 
radius = 0.313 in., time = 1 see, 5 = 0.533, y = 7 rad./sec, rm = 8.5 h2/sec.  
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